Date of Award

2016

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mathematics

First Advisor

Richard M. Foote

Second Advisor

Byung S. Lee

Abstract

An abundance of information regarding the structure of a finite group can be obtained by studying its irreducible characters. Of particular interest are monomial characters – those induced from a linear character of some subgroup – since Brauer has shown that any irreducible character of a group can be written as an integral linear combination of monomial characters. Our primary focus is the class of M-groups, those groups all of whose irreducible characters are monomial. A classical theorem of Taketa asserts that an M-group is necessarily solvable, and Dade proved that every solvable group can be embedded as a subgroup of an M-group. After discussing results related to M-groups, we will construct explicit families of solvable groups that cannot be embedded as subnormal subgroups of any M-group. We also discuss groups possessing a unique non-monomial irreducible character, and prove that such a group cannot be simple.

Language

en

Number of Pages

52 p.

Included in

Mathematics Commons

Share

COinS