Date of Award

2016

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Civil and Environmental Engineering

First Advisor

Ting Tan

Abstract

Nacre is a hierarchical material found within the tough shells of red abalone. Despite being composed of calcium carbonate, nacre exhibits remarkable mechanical properties resulting from the nanoscale brick-and-mortar structure made from aragonite polygons. The objective of this research is to elucidate the toughening mechanisms associated with the interfacial resistance of red abalone. This was achieved by studying the mechanical behavior of dry nacre under pure shear and tension, and characterizing the associated fracture mechanisms using optical and scanning electron microscopes. Mathematical modeling was applied to further quantify the contribution of protein chains, nano-asperities and shear pillars to interfacial strengths. Preliminary conceptual models were proposed to elucidate the toughening mechanisms of polymorphic aragonite structures in red abalone. The findings can extend our understanding of the mechanical behavior of natural materials and promote the research and development of high performance bioinspired materials.

Language

en

Number of Pages

89 p.

Share

COinS