Date of Completion

2018

Document Type

Honors College Thesis

Department

Mechanical Engineering

Thesis Type

Honors College

First Advisor

Darren Hitt

Second Advisor

Ryan McDevitt

Third Advisor

William Louisos

Keywords

satellite, attitude control, space, simulation

Abstract

The high cost of access to space has inspired the development of small, light, and cost-effective satellites known as cubesats. The satellites can have many different functions and systems on board, one of which is a miniaturized attitude control device, which provides the satellite with the ability to change its orientation in space. Because of weight constraints and frictional disadvantages of other mechanical systems, the solution of a spinning spherical permanent magnet as a gyroscope has been proposed. A similar design using a sphere and ferrofluid has been previously shown to produce angular momentum. The focus of this project was to develop a computational model for the spinning magnet in two dimensions for various time-dependent magnetic fields. The tool created in this study used principles of system dynamics and magnetic fields to show the behavior of the spinning magnet. Many different types of solenoid pulsing patterns can be simulated, so that a user may have a wide range of options for testing. Three test cases were performed to show that the simulated behavior is consistent with what is expected in the physical world. These test cases confirmed the accuracy of the model and demonstrated potential to use a magnetic gyroscope as an attitude control device. The simulations showed that producing angular momentum is possible with the right signal-control-algorithms.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Share

COinS