Document Type
Article
Publication Date
3-13-2014
Abstract
Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant "one model fits all" paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rights Information
© 2014 The Authors
Recommended Citation
Villa F, Bagstad KJ, Voigt B, Johnson GW, Portela R, Honzák M, Batker D. A methodology for adaptable and robust ecosystem services assessment. PloS one. 2014 Mar 13;9(3):e91001.
DOI
10.1371/journal.pone.0091001
Link to Article at Publisher Website
Included in
Community Health Commons, Human Ecology Commons, Nature and Society Relations Commons, Place and Environment Commons, Sustainability Commons